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1. Introduction

Singularities of string backgrounds have attracted much attention and have been investi-

gated using a variety of methods [1 – 6]. One is to study the gauge theory on a D-brane

probe of the singularity. While there has been much work done on extracting gauge theory

data for various types of singularities (abelian [1] and non-abelian [7] orbifolds, conifolds

[8, 9], toric [10 – 12, 6] and generalized del Pezzo [13, 14] singularities), a general method for

determining the superpotential has been lacking. In [10] the superpotential was obtained

from integrating the quiver relations for certain cases, with various ad-hoc methods being

used to resolve ambiguities that arise in such an integration. In this paper, using previous

work of [15], we present a general rigorous method for obtaining the superpotential of such

quiver gauge theories from the quiver relations. We show that the superpotential is just the

naive sum of terms of the form relation times the Ext2 field corresponding to the relation.

We apply the method to the trivial example of a P
2 as well as to a dP1, in which case we
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get a non-homogeneous superpotential. In principle we can apply it to a general del Pezzo

singularity — all we need is the del Pezzo quiver and relations.

We deal with flat compactifications M ×X where M is 4 dimensional Minkowski space

and X is a Calabi-Yau manifold, and we probe the theory with space filling branes — i.e.,

(n+3)-branes, where n is the dimensionality of the brane within X. We expect such branes

to be BPS and stable when probing a smooth point of X, but to marginally decay into

a collection of so-called fractional branes when the point becomes singular. We consider

singularities obtained when a complex surface (i.e., one that has 4 real dimensions) S

shrinks down to zero size in X by varying the Kähler parameters. Assuming that S is

smooth and irreducible, it is known that S must be a del Pezzo surface, i.e., P
1 × P

1,

or P
2 blown up at m points (denoted by dPm), where m ranges from 0 to 8. The 3 + 1

dimensional quiver gauge theory associated to this marginal decay into fractional branes

is the one whose superpotential we are after. This set up has been studied extensively in

the literature [16, 9, 17 – 21, 14, 22, 23].

The moduli space of a D-brane is given by the space of critical points of the super-

potential. Thus, knowing the moduli space one may make a guess at the form of the

superpotential. In the case at hand, this leads to a natural conjecture for the superpoten-

tial. By using more rigorous methods we are able to show that this conjecture is correct.

For our analysis we will use the algebraic machinery of the derived category of coher-

ent sheaves, developed in particular in [24, 25, 5]. The fractional branes have tractable

representations as elements of the derived category D(X) of coherent sheaves on X. In

principle the method of [15] can be applied to find the so-called A∞ products in the algebra

of Ext groups. These A∞ products are determined by combinatorial relations that they

have to satisfy (coming from Feynman diagrams in the associated topological theory) and

they encode the superpotential. Applying the technique of [15] directly is difficult and in

order to make the problem tractable, we instead proceed in two steps. First, we use a

spectral sequence argument to reduce the problem from one of studying sheaves on X to

the simpler one of studying sheaves on S. It is in this reduction that we show that each

Ext2 appears linearly in the superpotential, multiplying a term that involves only Ext1s

and is determined by A∞ relations over S. To compute these we exploit the well under-

stood properties of D(S), and specifically its intimate relation with the derived category

of quiver representations [26, 27]. We see that the terms involving the Ext1s are just the

(possibly non-homogeneous) relations in the quiver. It is important to note that we obtain

the superpotential only up to certain nonlinear field redefinitions (see [15]) — this is the

most that could be expected from such topological sigma model methods as we use.

The plan of the paper is as follows: in section 2 we review quivers and sheaves on

del Pezzo surfaces, and how they relate. In section 3 we review A∞ algebras and the

method of [15] for using the topological B model to compute A∞ structure and hence the

superpotential. In section 4 we introduce the quiver gauge theory we want to study and

prove that its superpotential is linear in the Ext2s, which multiply terms determined by the

A∞ structure over S — this is the reduction from sheaves on X to sheaves on S. In section

5 we solve the problem on S by reframing it as a computation in the derived category of

quiver representations, and apply the solution to the case S = P
2 and the more nontrivial
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case S = dP1. This example illustrates the general algorithm that can be carried through

for any quiver with known relations.

2. Quivers and Sheaves

2.1 Quivers

We now review the necessary mathematical notions relating to quivers and their repre-

sentations. Further background can be found in [5]. First, a quiver is a directed graph

Q that consists of nodes vi and arrows aα. Its path algebra A is defined as follows: as

a vector space, A is generated by all of the paths constructed through concatenation of

arrows in Q. The product structure of A is defined on these generators as follows: if path

1 ends on the same node that path 2 begins on, the product is defined to be the obvious

concatenation; otherwise it is defined to be 0. Note that corresponding to each node vi we

have a corresponding zero length path and hence an idempotent element ei of A.

In the remainder of the paper, we will deal with a slight generalization to a quiver with

relations. This is just a quiver whose path algebra is defined as the above A quotiented

out by a subspace generated by linear combinations of paths called relations. We stipulate

that any given relation must be a linear combination of paths between the same two nodes.

It does not, however, need to be homogeneous. A simple example (with homogeneous

relations) is the so-called Beilinson quiver, defined as:

◦ ◦ ◦
v0 v1 v2

xx
a0

oo a1ff
a2

xx b0
oo b1ff

b2
(2.1)

with relations aαbβ − aβbα.

For a given quiver Q, we can consider the associated category A–mod of left A-

modules. For any left A-module V we can form the vector spaces Vi = eiV , of dimension

Ni; if we then think of each Vi as living on node vi then we see that multiplication by

any arrow aα acts as a linear transformation between the spaces Vi at the tail and head

of aα, and these linear transformations respect the relations. This structure is known as a

representation of the quiver Q, of dimension (Ni).

A map φ between left A-modules V and W is simply a linear transformation that

commutes with the action of A, i.e., φ(av) = aφ(v). If we think of V and W as quiver

representations then this condition is just the obvious constraint that the maps from Vi

to Wi must commute with the linear transformations induced by the arrows, i.e., φ is a

map of representations. Thus we sometimes refer to the category of left A-modules as the

category of quiver representations, and we use these terms interchangeably from now on.

Corresponding to each node of Q there are two distinguished representations Pi and Li;

when we make the connection to sheaves on del Pezzo surfaces below, these will correspond

to sheaves in the exceptional collection and fractional branes, respectively, as we will see.

Li is defined simply as the one dimensional representation with Vi = C and all other Vj = 0.

Pi is defined as the subspace of A generated by all paths that begin at vi; it is trivially seen

to be a subrepresentation. It may seem that Pi is a rather large representation, and indeed,

if the quiver has any loops there will be infinite dimensional Pi. However, in the case of
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quivers associated to del Pezzo’s there will be an ordering on the nodes that is respected

by the arrows and hence all Pi will be finite-dimensional. This finite dimensionality is

in large part responsible for the tractability of the problem and motivates the reduction

mentioned earlier from sheaves on the Calabi-Yau to sheaves on the del Pezzo. In the

Beilinson quiver, for example, we see that P0, P1, and P2 have dimensions (1, 0, 0), (3, 1, 0),

and (6, 3, 1) respectively.

When we make the connection between quivers and sheaves it will be through the

derived category. Before we talk about that, however, let us first discuss some basic

homological properties of quivers. First of all, one can show that the Pi are projective

objects in A–mod. In fact, they form a complete set in the sense that any left A-module

has a resolution by various direct sums of these Pi. These projective resolutions can be

used to compute higher Ext groups. For example, the projective resolution of any Li is

. . . // ⊕
k P⊕rik

k
// ⊕

k P⊕nik

k
//Pi

//Li
//0. (2.2)

Here nij is the number of arrows from node i to node j and rij is the number of independent

relations imposed on paths from i to j. In the case of the Beilinson quiver, the resolutions

are:

0 // P0
// L0

// 0

0 // P⊕3
0

// P1
// L1

// 0

0 // P⊕3
0

// P⊕3
1

// P2
// L2

// 0

(2.3)

Noting that Extk is the kth derived functor of Hom and that Hom(Pi, Lj) = δijC we can

compute Extp(A,B) by taking a projective resolution

. . . //Π2
//Π1

//Π0
//A //0, (2.4)

where the Πi are direct sums of Pi’s and from it constructing the complex

0 // Hom(Π0, B) // Hom(Π1, B) // Hom(Π2, B) // . . . (2.5)

The cohomology of this complex in the pth position is then Extp(A,B). Using this method

one can show that

dim Ext1(Li, Lj) = nij

dim Ext2(Li, Lj) = rij.
(2.6)

In general, higher Ext’s may also exist. For example, Ext3 represents relations amongst

relations. However, for the purposes of quiver gauge theories, the appearance of higher

Ext’s is unphysical [16, 28] and so we assume

Extk(Li, Lj) = 0, k ≥ 3. (2.7)
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Finally, we note that we can recover the quiver path algebra from the projective rep-

resentations Pi. Supposing Q is a quiver with n nodes, this is done as follows: we let

T = P0 ⊕ P1 ⊕ · · · ⊕ Pn−1. (2.8)

Using the fact that Hom(Pi, Pj) is simply the vector space of paths from j to i we can

verify that

A ∼= End(T )op. (2.9)

In other words, A is just the algebra End(T ) with the product structure reversed.

2.2 The Derived Category

Having reviewed this preliminary material about quiver representations we move on to

briefly discuss the derived category. As mentioned above, the derived category will form a

bridge between the quiver representations that we have already discussed and the category

of coherent sheaves introduced below. One source is [5]; here we just review the facts we

will use.

Given any abelian category A (such as that of quiver representations, or that of

coherent sheaves discussed below) we can define its derived category D(A ) as follows. The

objects in D(A ) are complexes of objects in A :

. . . //E 0 d0 //E 1 d1 //E 2 d2 // . . . , (2.10)

To construct the morphisms in D(A ), we begin with the abelian group of all possible maps

between complexes (not necessarily respecting the differential). These maps are graded by

their degree p and can be written as

∑

n

fn,n+p (2.11)

where fm,n is a map from E m to E n. We define a differential on this group by (abusing

notation slightly):

(df)n,p+1 = dn+pfn,p − (−1)pfn+1,pdn (2.12)

The derived morphisms are now defined as the cohomology of this group, with formal

inverses added in for all quasi-isomorphisms (that is, those chain maps which induce iso-

morphisms on cohomology).

Now we state some necessary results without proof. Given any object A in A , we can

construct the associated one term complex whose only nonzero entry is A, at the zeroth

position. For brevity we will henceforth refer to both the object and the associated one term

complex by A. Then, for A,B in A , Ext•(A,B) is given by the group of derived morphisms

between the complexes associated to A and B, with the grading on Ext corresponding to

the grading of the derived morphisms. In fact, this is the generalization of the notion of

Ext to the arbitrary elements of D(A ). Also, any A in A is equivalent to its projective
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or injective resolution in the derived category. Further, if we represent either A by its

projective resolution or B by its injective resolution then the generators of Ext(A,B) can

be written as honest chain maps between these complexes.

2.3 Sheaves

We now turn to reviewing key aspects of the other relevant category, that of coherent

sheaves. It turns out that (as we will see in more detail below) the derived category of

coherent sheaves on a Calabi-Yau manifold X, denoted D(X), precisely describes D-branes

in the topological B model defined on X. The open string modes stretching between them

are described by the Ext groups of the sheaf homs between the relevant branes [24, 25, 5].

These, in turn, describe the massless spectrum of the physical theory on M × X. In fact

D(X) contains enough information to determine the tree-level superpotential of the low

energy effective theory, in the form of A∞ products. We will discuss all of this below, but

for now let us start by introducing coherent sheaves on Calabi-Yau’s and del Pezzo’s.

The category of coherent sheaves on a space X is an enlargement of the category

of vector bundles (also referred to as “locally free sheaves”) on X — it contains vector

bundles as well as all kernels and cokernels of maps of vector bundles. For a precise

definition, starting from the general concept of a sheaf, see [5] or [29]. We can very roughly

think of it as including, in addition to vector bundles over X, more exotic objects such as

vector bundles over submanifolds of X.

In the physical problem we consider D-branes on a shrinking cycle S which is embedded

in X: i : S → X. i induces an embedding i∗ : D(S) → D(X), and it is no surprise that the

branes we’ll be interested in are in fact in the image of i∗. Now, D(S) has been studied

extensively by mathematicians and is well understood.

We proceed by first defining a complete strongly exceptional collection of sheaves on

S to be an ordered set {F0, · · · ,Fn−1} that generates D(S) and satisfies ExtpS(Fi,Fj) =

0 for p 6= 0 and any i and j, and Ext0S(Fi,Fj) = HomS(Fi,Fj) = 0 for i > j and

HomS(Fi,Fi) = C. Given such a complete strongly exceptional collection, we can define

A = End(F0 ⊕ F1 ⊕ · · · ⊕ Fn−1)
op (2.13)

It turns out that A is the path algebra of a quiver Q, and the Fi are isomorphic (as A-

modules) to the projective representations Pi defined above. Given this we can reconstruct

the quiver uniquely simply by noting that HomS(Fi,Fj) = Hom(Pi, Pj) is just the space

of paths from node j to node i. In fact, Bondal [26] proved that the derived category of

A-modules, D(A–mod) is equivalent to D(S).

As an example, consider S = P
2. An exceptional collection is given by {O,O(1),O(2)}.

We have Hom(O,O(1)) ∼= C
3, Hom(O(1),O(2)) ∼= C

3. Denote these maps, which are just

multiplication by the homogeneous coordinates, by xi and yi respectively, i = 1, 2, 3. We

also have Hom(O,O(2)) ∼= C
6 — these maps are multiplication by homogeneous degree two

polynomials in the homogeneous coordinates. All this implies that we have three arrows

xi from node 2 to node 1, three arrows yi from node 3 to node 2, and that all paths from

node 3 to node 1 are compositions of these arrows, with relations xiyj − xjyi = 0.
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Another example which will be thoroughly dealt with below is S = dP1, which is

P
2 with one point blown up. Letting C1 be the exceptional divisor, a complete strongly

exceptional collection is {O,O(C1),O(H),O(2H)} where H is the hyperplane divisor. A

slightly more involved analysis shows the quiver to be

◦ ◦ ◦ ◦
v0 v1 v2 v3

oo a xx b0oo b1cc

c

xx d0oo d1ff
d2

(2.14)

with the relations b0d1 − b1d0 = 0, ab0d2 − cd0 = 0, and ab1d2 − cd1 = 0.

Now that we have Bondal’s theorem, we can use either D(S) or D(A–mod) to describe

branes on S. We will call the branes that correspond to the representations Li fractional

branes. Of course, we are actually interested in branes in X, i.e., in the image of D(S) in

D(X) as noted above. Using a local model of the Calabi-Yau X, namely representing it

as the total space of the normal bundle of S in X (which is isomorphic to the canonical

bundle) one can determine the Ext groups of sheaves in i∗D(S) in terms of the Ext groups

in D(S). Namely, we find using a spectral sequence argument [30, 31, 21, 32] that

ExtpX(i∗Li, i∗Lj) = Extp
S(Li, Lj) ⊕ Ext3−p

S (Lj , Li). (2.15)

In fact it is also true that only one of the direct summands on the right hand side of the

above equation is nonzero, and so we see that embedding S in X creates new open string

degrees of freedom — new Ext1’s corresponding to reversing Ext2’s in the del Pezzo quiver.

We can add in arrows corresponding to these new Ext1’s to obtain the completed quiver.

For example, the completion of the Beilinson quiver is

◦ ◦ ◦
v0 v1 v2

oooo
oo

oooo
oo

////
//

(2.16)

while the completion of the dP1 quiver becomes

◦ ◦ ◦ ◦
v0 v1 v2 v3

oo oooo

kk
oooo
oo

oooo rr
(2.17)

3. Superpotentials from Topological Field Theory

3.1 Topological Field Theory

Having developed and reviewed the requisite mathematical machinery, let us get to the

problem at hand, namely computing superpotentials for effective dimensionally reduced

theories [15]. Our setting is, as we said, M ×X with M being four dimensional Minkowski

space and X a Calabi-Yau threefold. In general, the object is to figure out how to obtain

the superpotential for a specified distribution of space-filling branes — the case of interest

involves putting D3 branes (which look like points in X) on a collapsing del Pezzo cycle

S in X, but let us for the purpose of developing some formalism first tackle the case of

a single space-filling and Calabi-Yau filling D9 brane, described by a complex line bundle
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E → X with a hermitian connection. (By itself this case is unphysical, in a sense, because

of anomalies but the topological field theory makes perfect sense.)

In this case, the massless four dimensional field content is determined by the Dolbeault

cohomology of X valued in End(E), H0,q

∂̄
(X,End(E)). Specifically, the number of vector

bosons is given by H0,0
∂̄

(X,End(E)) = End(E), where by abuse of notation the second term

refers to the space of global sections of End(E). We will work with simple line bundles, for

which End(E) = C. We could of course also take N copies of the brane, E⊕N , whereby

we obtain a U(N) gauge boson. Likewise, the number of chiral superfields is given by

H0,1
∂̄

(X,End(E)). Again, these are in the adjoint of U(N) when we take the bundle to be

E⊕N .

In order to get a term in the tree-level superpotential, we have to compute a disk dia-

gram with boundary insertions of vertex operators that correspond to the chiral superfields

that appear in that term. What makes this problem computationally tractable is the fact

that this disk diagram can be computed in a topological theory [33]; it is in some sense

protected from α′ corrections. Specifically, the open string topological B-model on X with

a D-brane E has open string spectrum given by A = H0,q

∂̄
(X,End(E)). Thus, if we define

the disk correlation functions as:

Bi0,i1,...,ik = (−1)ζ1+ζ2+...+ζk−1〈ψi0 ψi1 P

∫

ψ
(1)
i2

∫

ψ
(1)
i3

. . .

∫

ψ
(1)
ik−1

ψik〉, (3.1)

Here the ψim are vertex operators of ghost number one, i.e., they correspond to states

in H0,1
∂̄

(X,End(E)). If we let Zi be the effective four dimensional superfield corresponding

to the open string mode ψi, then the superpotential is

W = Tr





∞
∑

k=2

∑

i0,i1,...,ik

Bi0,i1,...,ik

k + 1
Zi0Zi1 . . . Zik



 . (3.2)

What have we accomplished by reducing the problem to a computation in a topological

sigma model? Heuristically, the situation is as follows [15]: we have, by reducing to the

topological theory, essentially gotten rid of the higher mode excitations of the string. Hence

the disk diagram we want is really a sum of Feynman diagrams in a field theory, called

holomorphic Chern-Simons theory. Because big Feynman diagrams can be built from

smaller ones, we obtain from this way of looking at things combinatorial relations among

the correlators, called A∞ relations, and it turns out that these determine the correlators

uniquely (up to field redefinition). In fact, the A∞ relations give a specific algorithm for

generating the correlators, and this algorithm generalizes to a more general setting where

D-branes are represented as elements of the derived category of coherent sheaves.

We now proceed to flesh out the above heuristic and describe the algorithm in detail.

First, we briefly review some mathematical background on A∞ products.

3.2 A∞ structure

Given a graded vector space B, such as the Dolbeault complex graded by q defined above,

an A∞ structure on B is defined as a series of products mk, k ≥ 1, of degree 2 − k
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mk : B⊗k → B, (3.3)

which satisfy the A∞ constraints:

∑

r+s+t=n

(−1)r+stmu(1⊗r ⊗ ms ⊗ 1⊗t) = 0, (3.4)

for any n > 0, where u = n + 1 − s. Here we assume the usual sign rule

(f ⊗ g)(a ⊗ b) = (−1)|g|.|a|f(a) ⊗ g(b) (3.5)

when moving arguments past operators.

The A∞ products can actually be rephrased in terms of a differential acting on a certain

space, with the complicated and unnatural looking relations between them being just the

condition that the differential squares to zero [15]. We will not pursue this interpretation

here however, except to note that it is useful to consider maps between spaces that commute

with the differential. In terms of the A∞ products, such a map between two spaces B and

B′ is described as an A∞ morphism, which is to say it is given by a series of maps

fk : B⊗k → B′, (3.6)

for k ≥ 1, which satisfy

∑

r+s+t=n

(−1)r+stfu(1⊗r ⊗ ms ⊗ 1⊗t) =
∑

1≤r≤n

i1+...+ir=n

(−1)qmr(fi1 ⊗ fi2 ⊗ · · · ⊗ fir), (3.7)

for any n > 0, u = n + 1 − s, and q = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + . . . + (ir−1 − 1).

Now note that the A∞ relations give m1 · m1 = 0, so that B has the structure of

a graded differential complex, and we can take cohomology H∗(B). We now come to a

theorem that forms the basis for the computational tractability of our results. Let B

be as above, except assume that all products mk are zero for k ≥ 3 — this structure is

called a differential graded algebra (dga). Given an embedding i : H∗(B) → B Kadeishvili

[34] shows that we may define an A∞ structure on H∗(B) that has m1 = 0 and an A∞

morphism f from H∗(B) to B with f1 equal to the embedding i. Furthermore if B and

B′ are quasi-isomorphic dga’s (that is, there is a map from one to the other that induces

an isomorphism on cohomology) then the two Kadeishvili A∞ structures on H∗(B) and

H∗(B′) are A∞-isomorphic.

There is in fact a well defined algorithm for determining the A∞ products of Kade-

ishvili’s theorem. The above condition for an A∞ morphism, for the case n = 2, gives

im2 = (i · i) + df2. (3.8)

The cohomology class of the right hand side of the above equation is just that of i · i and

hence m2 is uniquely determined. Therefore df2 is also uniquely determined, and we can

invert d to obtain a (non-unique) choice of f2. Now putting n = 3 we have
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im3 = f2(1 ⊗ m2) − f2(m2 ⊗ 1) + (i · f2) − (f2 · i) + df3. (3.9)

Once again, this equation uniquely determines m3 and df3, and allows us to make a choice

of f3. Continuing in this way, it is apparent that all A∞ products can be determined. The

ambiguity in the choice of fk reflects the ambiguity in the uniqueness clause of the above

theorem.

3.3 Holomorphic Chern-Simons Theory

The field theory that the topological B-model on X reduces to is holomorphic Chern-

Simons theory:

S =

∫

X

Tr
(

A ∧ ∂̄A + 2
3A ∧ A ∧ A

)

∧ Ω, (3.10)

where the A is a (0, 1)-form on X taking values in End(E), and Ω is a holomorphic (3, 0)-

form on X. As mentioned above, computation of the disk correlator in holomorphic Chern-

Simons theory reduces to a sum of Feynman diagrams (this reduction can be seen explicitly

as localization of the supersymmetric path integral on Feynman fat-graph configurations

arising from instantons at infinity, see [35]). The combinatorial relations which the Feyn-

man diagram picture gives rise to are precisely the A∞ relations. To make a rigorous

statement, first define a trace map

γ(a) =

∫

X

Tr(a) ∧ Ω, (3.11)

γ is a degree −3 map in the sense that only (0, 3)-forms a have nonzero trace. Define m1

to be ∂̄ and m2 to be the wedge product together with composition in End(E) — these

give the Dolbeault complex the structure of a dga. The embedding of ∂̄ cohomology into

the Dolbeault complex by harmonic forms then gives via Kadeishvili an A∞ structure to

H0,q

∂̄
(X,End(E)). The correlation functions can then be written [36]:

Bi0,i1,...,ik = γ
(

m2

(

mk(ψi0 , ψi1 , . . . , ψik−1
), ψik

))

, (3.12)

They satisfy the cyclicity property [36]:

Bi0,i1,...,ik = (−1)ζk(ζ0+ζ1+...+ζk−1)Bik,i0,i1,...,ik−1
. (3.13)

which will be important to us later.

Up to now we have been dealing with a single Calabi-Yau filling D-brane. The advan-

tage of working in the above framework is that it extends easily to more general D-brane

configurations. For example, (still for a single brane E) we may replace the Dolbeault com-

plex by a Čech complex, thereby turning a difficult problem in analysis, namely inverting

∂̄, into a more manageable combinatorial one. The uniqueness theorem above guarantees

that the two A∞ structures obtained are A∞-isomorphic. We could also use an injective

resolution of a sheaf instead of the Čech complex, and by appropriate abstraction reframe

the entire discussion in terms of D(X). In fact, for now the most convenient complex for
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us to use is a hybrid of the Čech complex and that obtained from locally free resolutions

(i.e., resolutions by vector bundles). Specifically, we claim that, for a D-brane represented

in the derived category by the locally free resolution

E
• =

(

. . .
dn−2 //E n−1

dn−1 //E n dn //E n+1
dn+1 // . . .

)

. (3.14)

the following complex has cohomology that gives the correct open string spectrum for the

brane and induced A∞ structure that gives rise to the correct superpotential:

. . . //Bn−1 //Bn //Bn+1 // . . . , (3.15)

where

B
n =

⊕

p+q=n

B
p,q

B
p,q = Čp (U,Homq(E •,E •)) .

(3.16)

This is shown in [15]. Two points need to be made here. First, the differential in (3.15) is

d = δ + (−1)pdq, with δ the Čech differential and dq given by

dnfn,p = dp+n ◦ fn,p − (−1)nfp+1,n ◦ dp. (3.17)

where
∑

p fn,p, with fn,p : E p → E p+n, is an element of

Homn(E •,E •) =
⊕

p

Hom(E p,E p+n). (3.18)

Second, to rigorously show that B indeed reproduces the correct spectrum and superpoten-

tial is non-trivial and requires an analysis of elements of the derived category as boundary

states of the worldsheet theory [5].

4. Superpotentials for del Pezzo singularities

4.1 Moduli Spaces

Before launching into a more rigorous discussion, let us first consider a heuristic argument

that will lead to a conjecture for the form of the superpotential.

First we quickly review the connection of the mathematics of quivers to the physics

of D-branes and stability. One should view a quiver as representing a decay of a D-brane.

The nodes in the quiver correspond to the decay products, i.e., the so-called “fractional

branes” and the arrows correspond to open strings between these decay products. The

D-brane we are particularly concerned with is the 3-brane corresponding to a point in X.

At the instant of decay, the open strings corresponding to the arrows should be exactly

massless. In the case of B-branes, these masses are a function of the complexified Kähler

form B + iJ . Here we assume that this masslessness occurs precisely when the del Pezzo

surface is collapsed to a point. This assumption was justified in [37].
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If one moves away from the critical point where the open strings are massless, then

the D-brane may become stable or unstable with respect to the decay. If we deform the

Kähler form to some generic value to give a nonzero size the del Pezzo surface (and all the

curves within it) then we expect the 3-brane to be stable.

In this resolution one may compute the moduli space of the 3-brane, which should,

of course, yield X itself. We need not concern ourselves with the details of this process

but we note the following. For more details we refer to [3, 38, 5, 37]. The moduli space

of 3-branes is essentially given by the moduli space of representations of the quiver. One

takes all possible quiver representations which satisfy “θ-stability” and then divides by a

gauge equivalence.

Physically this moduli space is given by the moduli space of chiral fields (given by

the matrices associated to arrows in the quiver) corresponding to classical solutions of

the field theory divided by gauge equivalence. Importantly for us, this must mean that

the superpotential imposes conditions on the chiral fields equivalent to the relations in the

quiver.

In other words, finding the critical points of the superpotential must be equivalent to

imposing the quiver relations. This leads to an obvious proposition for the superpotential.

Let Ai be the chiral fields in the worldvolume gauge theory associated to the arrows in the

(non-completed) quiver associated to a del Pezzo surface. The relations will be denoted

rk(A1, A2, . . .) = 0, where rk is some polynomial. We know from section 2.3 that each rk

is associated to some arrow in the completed quiver, and so some chiral field Rk. It is

believed (see [3, 5], for example) that in terms of the moduli space, setting all Rk equal

to zero amounts to restricting the 3-brane is be on the del Pezzo surface S itself. Giving

nonzero expectation values to the Rk fields moves the 3-brane off S.

If the superpotential is given by

W =
∑

k

Rkrk(A1, A2, . . .), (4.1)

then, on S, the equations of motion will yield precisely the correct constraints, at least for

3-branes on S. This, therefore, is our conjectured form for the superpotential.

4.2 Quiver Gauge Theories for del Pezzos

Let us now consider more systematically what happens when we put a D3-brane on a

shrinking del Pezzo cycle S in a Calabi-Yau X. Now, every BPS space-filling brane cor-

responds to a topological brane on X, but not vice versa. A point on X is always a valid

topological brane; when S is of finite size, the D3-brane will be located on a smooth point

of S and as we said we expect it to be BPS. On the other hand, when S shrinks, one

can argue (see e.g. [16]) that the D3 is marginally stable against decay into the fractional

branes introduced earlier. We think of these fractional branes as wrapping S — when S

shrinks the point-like D3 is allowed to marginally decay to them.

To get a precise description of these fractional branes, we recall that they correspond

to the representations Li, which have resolutions in terms of the projective representations

Pi. If we replace the Pi by the corresponding elements of the strongly exceptional collection
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(which are all vector bundles in the cases we consider) and use the equivalence between

derived categories, we obtain locally free resolutions of the fractional branes. For example

in the case of P
2 and the Beilinson quiver, L2 is represented in D(S) as

. . . //0 //F⊕3
0

d−3 //F⊕3
1

d−2 //F2
d−1 //0 // . . . (4.2)

The maps in the above complex are determined by the corresponding maps in the quiver

resolution of L2, using the fact that Hom(Fi,Fj) and Hom(Pi, Pj) are naturally isomor-

phic. It turns out that a D3-brane decays into a collection of fractional branes with each

fractional brane occurring dim Fi times [16]. The quiver gauge theory for a dPk will thus

have k + 3 gauge groups, corresponding to each of the Li, and massless matter in the bi-

fundamental from strings stretching between Li and Lj . The proper setting for discussing

the homological structure in this context is an A∞ category, but we do not need to get so

abstract. We simply let M • be the direct sum of the locally free resolutions of the Li, and

use it as the starting point for the A∞ computations. We remind the reader that M • is a

locally free resolution of sheaves over S, not X.

It will be convenient to represent X as the total space of the normal bundle N of S.

Because S is a del Pezzo, N ∼= KS [16]. We are allowed to take this limit in Kähler moduli

space because the tree level superpotential does not depend on Kähler parameters.

4.3 From Branes on X to Branes on S

The actual superpotential is computed from the A∞ products of the Čech complex asso-

ciated to branes not on S, but on X, i.e., not from B•,•, but rather from the associated

complex obtained from considering all the sheaves as embedded in X. The goal of this

section is to show that the computation of A∞ products associated to branes on X essen-

tially reduces to the computation on S. Specifically, we recall that (as we will see in greater

detail below) Ext1’s of sheaves on S considered as sheaves on X include all the Ext1’s of the

sheaves on S plus some extra Ext1’s, which, after a reversal of arrows, correspond to Ext2’s

of the sheaves on S. We will prove that there is a choice of A∞ structure over X such that

all A∞ products that contain more than one of the “extra” Ext1’s vanish. The products

that contain no “extra” Ext1’s are the same as they were over S, and the ones with one

“extra” Ext1 are determined uniquely by the requirement of cyclicity. This, together with

the fact that there are no cycles in del Pezzo quivers, will show that the superpotential is

linear in the “extra” Ext1s, with these Ext1s multiplying terms that are just the quiver

relations.

To proceed with the proof, let π : E → S be the projection from the total space of

KS to the del Pezzo S. We have a canonical section O → π∗KS , given as follows: to each

point in E we tautologically associate a point of S and an element of the fiber of KS over

that point; this element can be viewed as an element of the fiber of π∗KS over the original

point in E. Dualizing, we get a canonical map which fits into an exact sequence of sheaves

0 → π∗(KS
∗) → O → OS → 0. (4.3)
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and we can think of the first two terms as a locally free resolution of OS . The key point

now is to tensor the resolution M • with the above resolution of OS in order to obtain a

locally free resolution of i∗M :

// π−1M 0 // π−1M 1 // π−1M 2 //

// π∗(KS
∗) ⊗ π−1M 0 d

0
//

d1

OO

π∗(KS
∗) ⊗ π−1M 1 //

OO

π∗(KS
∗) ⊗ π−1M 2 //

OO

//

OO

i

j

(4.4)

Collapsing the above double complex along the diagonal we get a free resolution, and

the associated spectral sequence, which collapses at the E2 term, shows that it is in fact

a resolution of i∗M . This can also be viewed as the Cone construction [5]. We will

choose to retain the bi-grading, so let us represent the above resolution as M •,• (the first

index corresponds to the index of M •, and the second is either 0, for π−1M •, or 1, for

π∗(KS
∗) ⊗ π−1M •). We now define

C
p,i,j = Čp

(

π−1
U,Homi,j(M •,•,M •,•)

)

(4.5)

Here U is an affine open cover of S, and hence π−1U is an affine open cover of E.

The complex C is central in our analysis. There are several differentials we define on

C . First of all, in the locally free resolution M •,• label the differentials that increase the

first index by d
0
i,j and that which increases the second index by d

1
i,j . The combination

di,j = d
0
i,j + (−1)i

d
1
i,j is the standard differential associated to the locally free resolution of

M over E. Now, given a section of Homi,j(M •,M •) over an open set U , i.e., a section of
⊕

p,q HomU (M p,q,M p+i,q+j), we can denote it by

∑

p,q

f i,j
p,q, (4.6)

where

f i,j
p,q : M

p,q(U) → M
p+i,q+j(U) (4.7)

Then we can define differentials

d
0
i,jf

i,j
p,q = d

0
i,jf

i,j
p,q − (−1)(i+j)f i,j

p+1,qd
0
i,j (4.8)

d
1
i,jf

i,j
p,q = d

1
i,jf

i,j
p,q − (−1)(i+j)f i,j

p,q+1d
1
i,j. (4.9)

Finally, we have the Čech differential δ, and we define the total differential on C by

d = δ + (−1)p
(

d0 + (−1)id1
)

. Now, the sum d0 + (−1)id1 is the standard differential

associated to the locally free resolution of M over E, so that collapsing on the (i, j) indices

yields the double complex in [15], showing that C does indeed correctly compute the A∞

products.
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To actually get a handle on determining the A∞ algebra, it is useful to collapse C in a

different way and leverage our knowledge of the A∞ structure for sheaves on the del Pezzo

S. Specifically, let us collapse the complex on the (p, i) indices:

D
q,j =

⊕

p+i=q

C
p,i,j (4.10)

D•,• is a double complex with anticommuting differentials d0 = δ+(−1)p
d0, which increases

the first index, and d1 = (−1)q
d1, which increases the second one, that add up to d.

The desired cohomology is computed using a spectral sequence associated to this double

complex, which by arguments of [16] degenerates at the E2 term to give:

0 0 0 0

Ext−1
S (M,M ⊗ KS) Ext0S(M,M ⊗ KS) Ext1S(M,M ⊗ KS) Ext0S(M,M ⊗ KS)

Ext−1
S (M,M) Ext0S(M,M) Ext1S(M,M) Ext2S(M,M)

//

OO

q

j

(4.11)

(In our exposition the E1 term is given by taking cohomology with respect to d1). Serre

duality shows that ExtiS(M,M) ∼= Ext2−i
S (M,M ⊗ KS), so that

Ext1X(i∗M, i∗M) ∼= Ext1S(M,M) ⊕ Ext2S(M,M). (4.12)

The two terms on the right correspond to the Ext1s and “extra” Ext1s, respectively.

Now, the bottom row in the above diagram reproduces the cohomology of the complex

Bp,i — the complex associated to branes on S rather than X. In fact, we may naturally

embed Bp,i in

Čp
(

π−1
U,Homi(π−1

M
•, π−1

M
•)

)

. (4.13)

This complex, in turn, can be viewed as a sub-complex of C p,i,0. To see why, note that, from

(4.4), a section of Homi(π−1M •, π−1M •) determines a section of Homi,0(M •,•,M •,•);

basically it gives directly the maps among the sheaves in the upper row of (4.4), and,

taking the identity map on π∗(KS
∗) ⊗ π−1M •, it determines the maps for the sheaves in

the lower row as well. Also, from (4.11), we see that the composition of these embeddings

induces an isomorphism from the cohomology of Bp,i to the j = 0 part of the cohomology

of C p,i,j.

Now, in order to carry out the A∞ procedure we must choose representatives for all

cohomology classes in C p,i,j. The upshot of the construction in the previous paragraph is

that it gives us a natural choice of representatives of the j = 0 part of the cohomology;

in fact, it shows that the A∞ products of these j = 0 cohomology classes are exactly the

same as those in Bp,i. In other words, for the j = 0 generators the A∞ products are just

those defined over S. This accomplishes part of our goal of reducing the computation over

X to a computation over S; to finish we have to deal with products that may contain some

j = 1 generators.
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The j = 1 cohomology generators are the ones that contribute the “extra” Ext1s. To

carry out the A∞ procedure, we must pick representatives of their cohomology classes. We

choose these to be homogeneous of j degree 1, or, in other words, to lie in

Čp
(

π−1
U,Homi(π−1

M
• ⊗ π−1KS , π−1

M
•)

)

(4.14)

Clearly this is the most natural choice, though it should be pointed out that we could have

done something stupid and chosen the generator to have a nonzero (exact) j = 0 part,

for example. The advantage of having homogeneous generators is that their products are

homogeneous as well, and so vanish if they have j > 1.

Now we claim that any mk that contains more than one j = 1 generator vanishes. The

naive argument would invoke the j grading and the fact that there are no elements in C p,i,j

with j > 1. The obvious flaw is the fact that mk does not respect the overall grading —

it in fact has degree 2 − k. Thus we have to be more careful. We claim that although mk

has nonzero degree with respect to the overall grading p + i + j, through a careful choice

of fk, which we now construct, we can make mk respect the j grading. The claim at the

top of this paragraph then immediately follows.

We show by induction that all the fk and mk respect the j grading. Clearly f1 and

m1 respect the j grading. Suppose that this is also true for all k ≤ n. We have for all n+1

(3.7), which can be rewritten as an equation determining mn+1 in terms of the lower mk

and fk (for n + 1 = 3, for example, this is (3.9)). So we immediately see that it’s true for

mn+1. We now deal with fn+1. We suppress its arguments, but everywhere below fn+1

and dfn+1 will stand for fn+1 and dfn+1 applied to their arguments. Now equation (3.7)

again gives dfn+1 as an expression in terms of mn+1 and the mk and fk for k ≤ n. We have

to make a choice of fn+1 that respects the j grading, i.e., we want fn+1 to have the same j

degree as dfn+1. Now, the case when all the arguments have j = 0 has been discussed above

and clearly we have already defined fn+1 to have j = 0. When more than one argument

has j = 1 then, because all the terms in the expression for dfn+1 are homogeneous, we

have dfn+1 = 0, so that we can choose fn+1 = 0. The nontrivial case is when exactly one

argument has j = 1. In that case, dfn+1 is homogeneous of j degree 1 and hence lies in the

sub-complex

C
p,i,1 = Čp

(

π−1
U,Homi(π−1

M
• ⊗ π−1KS , π−1

M
•)

)

. (4.15)

The crucial point is now that the embedding C p,i,1 ⊂ C p,i,j induces an injection in coho-

mology. This can easily be seen from the spectral sequence (4.11) — the cohomology of

C p,i,1 reproduces precisely the upper, j = 1 row in the diagram. Therefore dfn+1 is exact

not only in C p,i,j but also in the sub-complex C p,i,1. Therefore we can choose fn+1 to be

in C p,i,1, so that it will have j = 1. Thus we see that we can always choose fn+1 to respect

the j grading. This completes the inductive step.

Together with the cyclicity property this determines all the A∞ products in C p,i,j in

terms of those over S. To restate, we have the original A∞ algebra reproduced when all the

arguments are the original Ext1’s (i.e., have j = 0), any product that involves more than

one “extra” Ext1 (i.e., one that has j = 1) must vanish, while any product that contains
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exactly one “extra” Ext1 is determined uniquely by requiring it to reproduce correlators

that obey the cyclicity property (3.13). Having accomplished the reduction and thus shown

that the superpotential is linear in the “extra” Ext1s, we now determine the A∞ products

over S and relate them to the quiver relations.

5. A∞ relations and quivers

We must determine the A∞ products over S, i.e., those of B•,•, defined in (3.16). We know

by Bondal’s theorem that D(S) is equivalent to D(A–mod), where A is the path algebra

of the associated quiver. The operational version of this equivalence that will suffice for

us is as follows. First, construct a complex of quiver representations M• by summing the

projective resolutions of the Li. In the usual way it gives rise to the graded dga End(M)•.

There is a natural map of this complex into B given by interpreting maps in End(M) as

global sections of the Hom(Fi,Fj) and mapping them to Čech 0-cochains. Because these

0-cochains are global sections, they are annihilated by the Čech part of the differential, and

one thus quickly sees that this map is a map of dga’s. In fact, (the derivation of) Bondal’s

theorem shows that it is a quasi-isomorphism. This allows us to apply Kadeishvili’s theorem

and compute the A∞ structure of B in the quiver dga End(M)•.

We will see that we obtain a form of the superpotential exactly as conjectured in

section 4.1.

5.1 A simple example

We start with the Beilinson quiver, corresponding to S = P
2:

◦ ◦ ◦
v0 v1 v2

xx
a0

oo a1ff
a2

xx b0oo b1ff
b2

(5.1)

with relations aαbβ = aβbα. We recall that we have the projective resolutions:

0 // P0
// L0

// 0

0 // P⊕3
0

// P1
// L1

// 0

0 // P⊕3
0

// P⊕3
1

// P2
// L2

// 0

(5.2)

and that

dim Ext1(Li, Lj) = nij

dim Ext2(Li, Lj) = rij,
(5.3)

where nij counts arrows and rij counts relations.

We start by choosing specific generators of the Exti. Recalling that the Ext• can be

represented as morphisms between resolutions of the Li, we can choose the three generators

ai of Ext1(L1, L0) to be

P⊕3
0

//

πi

²²

P1

P0

(5.4)

– 17 –



J
H
E
P
1
0
(
2
0
0
6
)
0
4
7

where πi is projection on the i’th factor. As far as the generators bi of Ext1(L2, L1) we

have b0 represented as

P⊕3
0

//
„

0 0 0
0 0 −1
0 1 0

«

²²

P⊕3
1

//

( 1 0 0 )

²²

P2

P⊕3
0

// P1

(5.5)

and the other bi represented similarly. We also have the relations ri in Ext2(L3, L2),

represented by

P⊕3
0

//

πi

²²

P⊕3
1

// P2

P0

(5.6)

Clearly, the only potentially nontrivial products are m2(aj, bi), and one easily sees by

composing the representatives for aj and bi that m2(aj , bi) = εijkrk. This gives rise to the

superpotential

W = εijkAiBjRk (5.7)

which is the correct superpotential for this quiver gauge theory on the orbifold C
3/Z3 [1].

Again, the Ai and Bj are massless moduli corresponding to the internal structure of the

shrinking cycle P
2, while Rk is the modulus that corresponds to moving the D3-brane off

the singularity. We note that the superpotential is of the desired form, linear in the “extra”

Ext1s Ri, which multiply the relations. To write it out explicitly, we have

W = (A0B1 − B1A0)R2 + (A1B2 − B2A1)R0 + (A2B0 − B0A2)R1 (5.8)

5.2 del Pezzo 1

Let us consider the quiver associated to dP1. It is:

◦ ◦ ◦ ◦
v0 v1 v2 v3

oo a xx b0oo b1cc

c

xx d0oo d1ff
d2

(5.9)

subject to the relations r0 = b0d1 − b1d0, s0 = ab0d2 − cd0 = 0, and s1 = ab1d2 − cd1 = 0.

Denote the corresponding generators of Ext2 by r0, s0, and s1. We first pick maps of

projective resolutions representing these generators, which all turn out to be uniquely

determined. We have the projective resolutions:

0 // P0
// L0

// 0

0 // P0
// P1

// L1
// 0

0 // P0 ⊕ P⊕2
1

// P2
// L2

// 0

0 // P⊕2
0 ⊕ P1

// P⊕3
2

// P3
// L3

// 0

(5.10)
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We choose representatives of Ext1(Li, Lj) as follows: for i ≤ 3, there are no relations

originating at the i’th node of the quiver and hence the maps representing bi, a, and c are

uniquely determined. The choice of representative of di is uniquely determined as well.

That is to say, in the diagram

P⊕2
0 ⊕ P1

//

²²

P⊕3
2

//

²²

P3

P0 ⊕ P⊕2
1

// P2

(5.11)

the bottom horizontal map is injective, so that the left vertical map is uniquely determined

by the right vertical map, which we take to be projection on the i’th factor. Finally, for

the generators of Ext2 we take the obvious uniquely determined maps from the projective

resolution of L3 to the other Li.

We want to compute all products mk of the various Ext1’s. Such products will all

be in Ext2, and because only Ext2(L3, L0) and Ext2(L3, L1) are nonzero we see that the

possible nonzero products are m2(bi, dj), m2(c, di), and m3(a, bi, dj). Let’s look at the first

of these; the relevant composition is:

P⊕2
0 ⊕ P1

//

²²

P⊕3
2

//

²²

P3

P0 ⊕ P⊕2
1

//

²²

P2

P0
// P1

(5.12)

The map from the first to the second row is dj and that from the second to the third

row is bi. For convenience, we label the individual Pks that occur in various parts of the

diagram. The upper left entry is P⊕2
0 ⊕P1, where each summand corresponds to a different

relation. We naturally label the two P0s as S0 and S1, and we label the P1 as R0. The

entry below this one is P0 ⊕ P⊕2
1 , and here each Pk corresponds to an arrow emanating

from P2. Thus we label the P0 as C and the two P1s as B0 and B1.

Let us consider the possible maps we can have. For k > l there are no nonzero maps

from Pk to Pl. From each Pk to itself there is the identity map, and it is the only one

that will be of use to us. For k < l, however, there are several ways to map Pk to Pl, each

corresponding to a path from node l to node k. Thus, for example, there is one map from

P0 to P1, denoted by a.

To see how dj acts note that it maps R0 ⊕ S0 ⊕ S1 to C ⊕ B0 ⊕ B1. We can thus

represent its action on R0 ⊕ S0 ⊕ S1 as a 3 by 3 matrix. From the definition of dj it is

easy to obtain (by slight abuse of notation we denote by dj both itself and its restriction

to R0 ⊕ S0 ⊕ S1):
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d0 =







0 −1 0

0 0 0

−1 0 0






, d1 =







0 0 −1

1 0 0

0 0 0






, d2 =







0 0 0

0 a 0

0 0 a






. (5.13)

Note that these matrix elements are simply obtained by “contracting” the relevant relation

(which indexes the column) with dj to obtain the elements of the column. Similar reasoning

shows that the bi act as follows:

b0 =
(

0 1 0
)

, b1 =
(

0 0 1
)

. (5.14)

The nonzero compositions are

b0d1 =
(

1 0 0
)

, b0d2 =
(

0 a 0
)

, (5.15)

b1d0 =
(

−1 0 0
)

, b1d2 =
(

0 0 a
)

, (5.16)

Now, note that the compositions b0d2 and b1d2 can both be factored through the leftmost

map P0 → P1, and hence are exact in the quiver dga. So the only nonzero products are

m2(b0, d1) = r0,m2(b1, d0) = −r0. (5.17)

A good shorthand way of expressing this result is that m2(bi, dj) = (bidj , R0)r0 +(bidj , S0)s0
+(bidj , S1)s1, where the parentheses denote the coefficient of the string represented by the

left argument in the relation represented by the right argument. As one traces through

the above manipulations it is clear that this is a general result that always holds when

one computes the products m2. Thus we have m2(c, d0) = −s0, m2(c, d1) = −s1, and

m2(c, d2) = 0.

To compute m3, we first have to define a choice of f2, which must satisfy

im2 = (i · i) + df2. (5.18)

Quick inspection shows that we may take f2 = 0 everywhere except for f2(bi, dj). From

the above analysis, we see that

df2(b0, d2) =
(

0 −a 0
)

, df2(b1, d2) =
(

0 0 −a
)

. (5.19)

where a denotes right multiplication and the notation indicates a map P⊕2
0 ⊕ P1 → P1.

Hence we can define f2(b0, d2) and f2(b1, d2) respectively as:

P⊕2
0 ⊕ P1

//

( 0 −1 0 )
²²

P⊕3
2

//

0

²²

P3

P0
// P1

(5.20)
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P⊕2
0 ⊕ P1

//

( 0 0 −1 )
²²

P⊕3
2

//

0

²²

P3

P0
// P1

(5.21)

Now, we have

im3 = f2(1 ⊗ m2) − f2(m2 ⊗ 1) + (i · f2) − (f2 · i) + df3, (5.22)

so that, recalling the sign rule (3.5), m3(a, bi, dj) = − [a · f2(bi, dj)]. Composing with a we

see that m3(a, b0, d2) = s0 and m3(a, b1, d2) = s1. Again, a shorthand way of expressing

this result is m3(a, bi, dj) = (abidj , R0)r0 + (abidj , S0)s0 + (abidj , S1)s1. These are all the

nonzero A∞ products in this example.

One can see by carrying out the A∞ algorithm that this formula generalizes to all the

mk in any quiver. We sketch the argument modulo various signs, which have to be checked

carefully. Let the relations by labeled by Ri and the corresponding generators of Ext2 by ri,

as above. One proceeds by induction on k0. Let’s take the following inductive hypothesis:

for all j < k0, we have

mj(a1, . . . , aj) =
∑

i

(a1 . . . aj , Ri)ri (5.23)

as well as a statement about fk for which we need to introduce some notation. Each ai is

an Ext1, so that it can be represented as a map between the projective resolution of Lm(i)

and Lm(i−1). According to this notation, ai is an arrow between node m(i) and m(i − 1).

The projective resolution of Lm(i) is

. . . // ⊕
k P

⊕rm(i)k

k
// ⊕

k P
⊕nm(i)k

k
//Pm(i)

//Lm(i)
//0. (5.24)

The second part of the inductive hypothesis is that for j < k0, fj(a1, . . . , aj) is represented

as:

⊕

k P
⊕rm(j)k

k
//

²²

⊕

k P
⊕nm(j)k

k
//

0

²²

Pm(j)

⊕

k P
⊕nm(0)k

k
// Pm(0)

(5.25)

where the left vertical map takes each relation to an Ext1 determined by the contraction

of the relation with a1 . . . aj (we extract only the linear terms in the contraction, as only

these correspond to Ext1s). fj with any Ext2s as arguments vanish.

For the inductive step, we have to prove the analogous statements for mk0. We use (3.7)

to write mk0 in terms of the lower mjs and fjs. We then note from the above form of the fj

that all terms vanish except (i · fk0−1) — basically because the only nonzero map in (5.25)

takes relations to Ext1s, so the composition of two fjs vanishes. This straightforwardly

leads to (5.23) for mk0. Inverting d shows that fk0 may be chosen to be of the form (5.25).
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Thus essentially one knows these products as soon as one knows all the relations in

the quiver. It follows that the term in the superpotential that multiplies the “extra” Ext1

corresponding to a given relation is simply that relation (written as a polynomial in the

Ext1s). We can now write down the superpotential:

W = R0(B0D1 − B1D0) + S0(AB0D2 − CD0) + S1(AB1D2 − CD1) (5.26)

6. Conclusions

We have given an effective method for computing superpotentials for quiver gauge theories

associated with shrinking del Pezzo cycles. We showed that the superpotential is linear

in the fields that correspond to Ext2s in the del Pezzo quiver, and that each such field

multiplies a polynomial which is just the corresponding relation. To do this we performed

a precise reduction of the problem from one involving sheaves on the Calabi-Yau to one

involving sheaves on the del Pezzo. We solved the problem on the del Pezzo by switching to

the algebraically more tractable category of quiver representations and explicitly evaluating

the A∞ products there. We did only the cases where S is P
2 and dP1, but these examples

show that the algorithm is trivial to carry out provided one has the quiver and the relations.

These, of course, might not be so trivial to obtain, especially for the higher del Pezzos,

which themselves have complex structure moduli. These complex structure moduli are

contained in the choice of points to be blown up on P
2, and will show up in the quiver

relations.
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